Outdoor / direct burial STP cable 4x2xAWG23 Category $6_{A}, 550 \mathrm{MHz}$, with double-sheath

10 Cat. E_{A}
Gigabit

550

MHz
outdoor

features

- double sheath with total thickness of 1.7 mm
- extremely resistant to mechanical damage and environmental influences
- resistant to moisture, water and UV radiation
- cable core is identical with construction of KE550HS23/1E-Eca
- enables transmission of all high-speed protocols including 10GBASE-T
- tested in bandwidth up to 550 MHz

application

- primary (Campus), secondary (Riser), tertiary (Horizontal)
- IEEE 802.3: 10BASE-T; 100BASE-T; 1000BASE-T; 10GBASE-T
- IEEE 802.5 16 MB; ISDN; FDDI; ATM
- high bandwidth digital applications with low BER

construction

Conductor	bare copper wire AWG23	
Insulation	foamskin polyethylene, $\varnothing 1.31 \mathrm{~mm}$	
Twisting	2 cores to the pair	
Pair screen	Al-laminated plastic foil	
Cable lay up	4 pairs to the core	
Sheath	PE, black RAL9005	
	outer	LSOH, gray RAL7035
Outer cable diameter	$8,8 \mathrm{~mm}$	
Outer PE sheath thickness	$0,9 \mathrm{~mm}$	
Inner sheath thickness	$0,8 \mathrm{~mm}$	

mechanical properties

Min. bending radius	installation	72 mm
	operation	36 mm
Temperature range	installation	$0^{\circ} \mathrm{C}$ až $+50^{\circ} \mathrm{C}$
	operation	$-20^{\circ} \mathrm{C} \mathrm{až}+70^{\circ} \mathrm{C}$
Max. tensile load	$100 \mathrm{~N}(10 \mathrm{~kg})$	
Weight	$67 \mathrm{~kg} / \mathrm{km}$	

electrical properties at $20^{\circ} \mathrm{C}$

Loop resistance	-	$\leq 145 \Omega / \mathrm{km}$
Resistance unbalance	-	$\leq 2 \%$
Insulation resistance	$(500 \mathrm{~V})$	$\geq 5000 \mathrm{M} \Omega \times \mathrm{km}$
Capacity	at 800 Hz	nom. $43 \mathrm{nF} / \mathrm{km}$
Capacity unbalance	(pair/ground)	$\leq 1500 \mathrm{pF} / \mathrm{km}$

Characteristic impedance	at 100 MHz	$(100 \pm 5) \Omega$
Nominal velocity of propagation (NVP)	-	$(100-250 \mathrm{MHz})$
Propagation delay	Nominal	cca 75%
Delay skew	Nominal	$\leq 450 \mathrm{~ns} / 100 \mathrm{~m}$
Test voltage	(DC, 1 min$)$	$\leq 15 \mathrm{~ns} / 100 \mathrm{~m}$
	core/core; core/screen	1000 V
Transfer impendance	at 1 MHz	$\leq 50 \mathrm{~m} \Omega / \mathrm{m}$
	at 10 MHz	$\leq 100 \mathrm{~m} \Omega / \mathrm{m}$
Coupling attenuation	at 30 MHz	$\leq 200 \mathrm{~m} \Omega / \mathrm{m}$
	at 100 MHz	$\leq 1000 \mathrm{~m} \Omega / \mathrm{m}$

transmission properties at $20^{\circ} \mathrm{C}$

$\begin{aligned} & f \\ & (\mathrm{MHz}) \end{aligned}$	Attenuation (dB max)	NEXT (dB min)	PS-NEXT (dB min)	ACR (dB/100m)	PS-ACR (dB/100m)	ELFEXT (dB/100m)	PS-ELFEXT (dB/100m)	Return loss (dB)
1,0	1,9	100,0	97,0	97,0	94,0	103,0	100,0	-
4,0	3,5	100,0	97,0	96,0	93,0	103,0	100,0	26,0
10,0	5,5	100,0	97,0	94,0	91,0	96,0	93,0	29,0
16,0	6,9	100,0	97,0	92,0	89,0	92,0	90,0	29,0
20,0	7,8	100,0	97,0	91,0	88,0	90,0	87,0	29,0
31,2	9,7	100,0	97,0	89,0	86,0	86,0	83,0	28,0
62,5	13,8	100,0	97,0	85,0	82,0	80,0	77,0	27,0
100,0	17,7	99,0	96,0	82,0	80,0	76,0	73,0	25,0
125,0	19,6	94,0	91,0	74,0	71,0	74,0	71,0	24,0
155,5	22,3	93,0	90,0	71,0	68,0	72,0	69,0	24,0
175,5	23,4	92,0	89,0	69,0	66,0	72,0	69,0	23,0
200,0	25,3	91,0	88,0	66,0	63,0	70,0	67,0	23,0
250,0	28,7	89,0	86,0	61,0	58,0	68,0	65,0	22,0
300,0	32,3	88,0	85,0	57,0	54,0	66,0	63,0	22,0
400,0	38,0	86,0	83,0	47,0	45,0	63,0	60,0	21,0
500,0	41,2	84,0	81,0	39,0	36,0	60,0	57,0	20,0
550,0	43,5	83,0	80,0	33,0	30,0	58,0	55,0	18,0

